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Abstract. We present a statistical description of Bose-Einstein condensates with general higher order
nonlinearities. In particular, we investigate the case of cubic-quintic nonlinearities, of particular interest
for dilute condensates. The implication of decoherence for the stability properties of the condensate is
discussed.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations – 05.45.-a Nonlinear dynamics and nonlinear dynamical systems –
67.40.Vs Vortices and turbulence – 67.57.De Superflow and hydrodynamics

The basic concept of macroscopic quantum states, such
as Bose–Einstein condensates (BECs) [1] and lately also
Fermi condensates [2], has caught the interest of the
physics community, both due to the nature of the concept
itself but also since the possibilities to perform new and
exciting experiments was early recognized [1]. BECs are
normally described by the Gross-Pitaevskii (GP) equa-
tion [3], in which the cubic nonlinearity represents two-
body forces between the bosons in the condensate. There
are numerous works on the theoretical foundations and
implications of the GP equation [4–6]. When the scatter-
ing length is positive, the possibility of dark solitons is
given via the GP equation. Such dark solitons are stable
towards perturbations in one dimension, while the multi-
dimensional case is more complex. Such dark solitons have
also been found experimentally [7]. In the case of a neg-
ative effective scattering length, the GP equation admits
bright solitons, which are prone to collapse in dimensions
larger than one. Such bright solitons have also been exper-
imentally obtained, both in terms of trains of solitons [8],
as well as single solitary structures [9]. The dynamics of
these bright soliton structures has also been analyzed both
analytically [10] and numerically [11].

If three-body interactions are taken into account,
higher order nonlinearities will modify the GP equation.
We may write this as a generalized NLSE of the form [12]

i�∂tψ +
�

2

2m
∇2ψ + α|ψ|2ψ + β|ψ|4ψ = 0, (1)

where α and β in general is complex-valued, and ψ is the
condensate wave function. As β goes to zero, we regain
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the GP equation. The real parts of α and β corresponds to
elastic collisions within the condensates, while the imagi-
nary part appears due to inelastic scattering [13]. In what
follows we will neglect the collisional losses, and assume
that α and β is real, and can take on both positive and neg-
ative values. In fact, the coefficient α is proportional to a,
the scattering length, which can be tuned to take on both
negative and positive values (see, e.g. Refs. [14] and [17]),
while β is proportional to a4 for dilute systems [15–17].
Thus, in BECs where a is large, the quintic contribution
to equation (1) may become significant. Equation (1) can
be demonstrated to have solitary solutions in one and two
dimensions [12], and appears not only in the physics of
BECs, but also in, e.g. nonlinear optics [18]. Furthermore,
equation (1) is a special case of the equation

i�∂tψ +
�

2

2m
∇2ψ + U

(|ψ|2)ψ = 0, (2)

where U in general is a complex-valued function of the
norm of the wave function squared.

The stability of solutions to equation (1) towards co-
herent perturbations was analyzed by [19], where the
growth rate for the modulational instability was found.
This growth rate signifies the onset of purely growing per-
turbations, and is thus an important indication of the pos-
sibility of solitary solutions. However, the effects of inco-
herence, e.g. a random phase in the wave function, may
significantly alter the modulational instability and there-
fore also the onset of inhomogeneity growth, and is an im-
portant issue (for a discussion, see, e.g. Refs. [20] and [21]).
A very direct approach in analyzing the effects of par-
tial coherence lies in the Wigner formalism [22,23]. This
approach has found uses in the study of surface gravity
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waves in fluids [24] and electromagnetic waves in nonlin-
ear media [25], in quantum statistical mechanics [26], in
nonlinear optics [27], and in quantum plasmas [28]. Here
we will apply the Wigner formalism to the problem of
partial coherence in the modulational instability of higher
order nonlinear BECs.

In order to analyze the statistical properties of equa-
tion (1), we may introduce the Fourier transform of the
two-point correlation function of the wave function, i.e.
the Wigner function, according to

F (t, r,p)=
1

(2π�)s

∫
dξ eip·ξ/�〈ψ∗(r+ξ/2, t)ψ(r−ξ/2, t)〉

(3)
for the wave function ψ, where s denotes the dimension-
ality of the problem at hand, the asterisk is the complex
conjugate operation, and the angular bracket denotes the
ensemble average. The Wigner function corresponds to a
generalized distribution function for the bosons, and by
applying the time derivative to equation (3) and using
equation (2), one finds the Vlasov-like equation

∂tF +
1
m

p · ∇F +
2
�
U(|ψ|2) sin

(
�

2
←
∇ · →∇p

)
F = 0. (4)

where the sin-operator is defined in terms of its Taylor ex-
pansion and the arrows denote the direction of operation.
In the case of of a cubic-quintic nonlinearity, such as in
equation (1), we obtain

∂tF +
1
m

p · ∇F +
2
�
(α|ψ|2 +β|ψ|4) sin

(
�

2
←
∇ · →∇p

)
F = 0

(5)
Moreover, the modulus square of the wave function is
given by

|ψ|2 =
∫

dpF (t, r,p). (6)

For the sake of clarity, we now focus on the one-
dimensional case. The stability of equation (4) can
be analyzed using a linearization procedure. Letting
F = F0(p) + f(p) exp(ikz − iωt), where |f | � F0, we lin-
earize equation (4) in order to obtain the nonlinear dis-
persion relation

1 = −m

�k

dU

d|ψ0|2
∫

dp
F0(p+ �k/2)− F0(p− �k/2)

p− ωm/k
. (7)

Equation (7) is the general dispersion relation for matter
waves taking into account higher order nonlinearities.

For the case of a cubic-quintic nonlinearity, equa-
tion (7) reduces to

1=−m
�k

(
α+2β|ψ0|2

)∫
dp

F0(p+ �k/2)− F0(p− �k/2)
p− ωm/k

.

(8)
For the monochromatic wave case, i.e. F0(p) = |ψ0|2δ(p−
p0), we obtain the dispersion relation [19]

ω =
p0k

m
±

[
�

2k4

4m2
− k2|ψ0|2

m

(
α+ 2β|ψ0|2

)]1/2

(9)

from equation (8). Setting β = 0 in the dispersion rela-
tion (9), we obtain the Bogolubov expression [29] for the
elementary excitations of the BEC. The standard method
employed in obtaining the result (9) with β = 0 is to
set ψ = ψ0 + ψ1, where |ψ1| � |ψ0| and ψ0 is the back-
ground state, and linearizing equation (1), after which the
equation may be split into its real and imaginary part
and harmonically decomposed. We note that the Wigner
approach presented in this paper is equivalent in to the
Bogolubov method in the monochromatic limit. Letting
ω = p0k/m + iγ in the above equation, we obtain the
modulational instability growth rate [19]

γ =
[
k2|ψ0|2
m

(α+ 2β|ψ0|2) − �
2k4

4m2

]1/2

. (10)

If the waves are not exactly monochromatic, but have a
spectral broadening due to, e.g. a random phase in the
background wave function, we may model equilibrium con-
densate spectrum by a Lorentzian distribution [30]

F0(p) =
|ψ0|2
π

pT

(p− p0)2 + p2
T

, (11)

where pT denotes the width of the distribution. The
Lorentzian distribution solves equation (5), as well as the
more general (4), and is thus a valid perturbation back-
ground. We note that the phase fluctuations may stem
from a variety of perturbations, e.g. thermal effects or
quantum fluctuations [21]. The dispersion relation (7) for
this case then turns out to be

ω =
p0k

m
±

[
�

2k4

4m2
− k2

m

dU

d|ψ0|2 |ψ0|2
]1/2

− i
pTk

m
, (12)

which gives the growth rate

γ =
[
k2

m

dU

d|ψ0|2 |ψ0|2 − �
2k4

4m2

]1/2

− pTk

m
. (13)

The growth rate (13) is valid for a general nonlinearity. We
note that if dU/d|ψ0|2 ≤ 0, there is no modulational insta-
bility growth, and the perturbations are damped. Thus, a
minimum requirement for a positive growth rate for an ar-
bitrary nonlinearity in equation (2) is that dU/d|ψ0|2 > 0.

In the case of a cubic-quintic nonlinearity
U(|ψ|2) = |ψ|2(α + β|ψ|2), equation (12) reduces to

ω =
p0k

m
±

[
�

2k4

4m2
− k2|ψ0|2

m

(
α+ 2β|ψ0|2

)]1/2

− i
pTk

m
,

(14)
which gives a purely growing modulational instability
whose growth rate is

γ =
[
k2|ψ0|2
m

(
α+ 2β|ψ0|2

) − �
2k4

4m2

]1/2

− pTk

m
. (15)

Comparing with equation (15) with equation (10), one
clearly sees the damping character of the spectral broad-
ening term. We note that since α and β may be posi-
tive or negative, independent of each other, the instabil-
ity properties crucially depends on the nonlinear terms
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in the expression (13). If α, β < 0 (the defocusing case),
modulational instability growth is not possible, and this
corresponds to the well-known stability of dark solitary
solutions. However, if we have α < 0 (defocusing cubic
nonlinearity), while β > 0 (focusing quintic nonlinearity),
we may have a new instability regions, not present in the
Gross–Pitaevskii equation. If α > 0 (focusing cubic non-
linearity) and β < 0 (defocusing quintic nonlinearity) we
will have a damping in the growth rate due to three-body
interaction. Note that this damping is quite different from
the dissipation due to inelastic three-body scattering, and
has more the character of Landau damping [21]. It is also
clear that the case α, β > 0 (the focusing case) gives the
maximum instability growth rate. However, even in this
case, a very broad spectral distribution of the BEC, due
to e.g. thermal noise, may quench the growth rate con-
siderably, even removing it all together. We would like
to stress that the Wigner method presented in this pa-
per is a very general approach to partial coherence and
spectral broadening. Thus, the method is appropriate for
a variety of spectral distributions, e.g. Gaussians, as well
as the Lorentizian (11), but this will be pursued in future
research.

To summarize, we have presented a perturbation
analysis of the statistical properties of the generalized
Gross–Pitaevskii equation (1), by using the Wigner for-
malism. In the case of a random phase of the background
wave function of the condensate, we find that the spectral
broadening gives rise to a reduced growth rate, as com-
pared to the mono-chromatic case.
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